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Fluctuations in a L6vy Flight Gas 
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We consider the density fluctuations of an ideal Brownian gas of particles per- 
forming L6vy flights characterized by the index f. We find that the fluctuations 
scale as AN(t)  ~ t H, where the Hurst exponent H locks onto the universal value 
1/4 for L6vy flights with a finite root-mean-square range (f>2).  For L6vy 
flights with a finite mean range but infinite root-mean-square range (1 < f <  2) 
the Hurst exponent H= 1/(2f). For infinite-range L6vy flights ( f <  I) the Hurst 
exponent locks onto the value 1/2. The corresponding power spectrum scales 
with an exponent 1 + 2H, independent of dimension. 

KEY WORDS: L6vy flight; Hurst exponent; Brownian motion; scaling argu- 
ment; density correlations; temporal fluctuations; return times; simulation; 
power spectrum. 

1. I N T R O D U C T I O N  

It  is of  interest  to invest igate  the influence of microscopic  dynamica l  pro-  
cesses on the macroscop ic  proper t ies  of  m a n y - b o d y  systems. In  par t icular ,  
it is of great  impor t ance  to invest igate  scaling behav io r  and  the role of 
universal i ty.  Here  we cons ider  the macroscop ic  f luctuat ions of the densi ty  
of a gas of  i ndependen t  and  nonin te rac t ing  particles.  The indiv idual  par -  
ticles are assumed to per form scale- invar iant  L6vy flights charac ter ized  by  
an exponent  f.(1 6) This system is pa r t i cu la r ly  s imple since the r a n d o m  pro-  
cesses are addi t ive  and  the system otherwise is ent irely linear. We  find tha t  
the t empora l  f luctuat ions  of  the densi ty  A N ( t )  ~ t H, i ndependen t  of the spa-  
t ial  d imension.  F o r  f > 2  the roo t -mean - squa re  range of the ind iv idua l  
L6vy flight is finite, the central  l imit  theorem (7) holds,  and  the Hurs t  expo-  
nent  (2'6) H locks on to  the universal  value 1/4 character is t ic  of  o rd ina ry  
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Brownian motion. (8'9) In the interval 1 < f < 2 the root-mean-square range 
diverges, but the L6vy flight still has a range given by the mean value of 
the step size. In this case the Hurst exponent shows an anomalous behavior 
and depends explicitly on f ,  H =  1/(2f), i.e., the macroscopic scale of the 
fluctuations depends on the microscopic L6vy distribution. For 0 < f <  1 
the L6vy flights have infinite range and H locks onto the value 1/2. 

2. M O D E L  

We consider a system of particles in d-dimensional space. The particles 
perform independent isotropic random motion with a step size distribution 
given by the L6vy distribution, (3'7) 

P(s)  d s ~ s  1 f ds (1 )  

At short distances we introduce a microscopic cutoff representing the 
shortest length scale in the problem, i.e., a lattice distance or a molecular 
size. This UV cutoff is taken as our length unit. In order to ensure a proper 
normalization of P(s) ,  we must choose the characteristic exponent f >  O. 

The macroscopic physics ensuing from the L6vy distribution for the 
microscopic elementary step depends entirely on the range characteristics 
of P(s) .  For f > 2  the second moment ( s 2 ) ~ S P ( s ) s 2 d s  exists and a 
characteristic step size is given by the root mean square deviation (s 2 }1/2. 
For l < f < 2  the second moment diverges, but the mean range (s}  is 
finite, defining an effective step size. In the interval 0 < f <  1 the first 
moment diverges and a mean step size is not defined. 

3. SCALING A R G U M E N T  

Before we make a more detailed analysis of the density fluctuation 
spectrum we present, in analogy with the analysis in ref. 8, a simple scaling 
argument for the temporal fluctuations of the particle density. The 
transition probability P ( r t l r ' t ' )  for a Brownian particle carrying out a 
series of L6vy flights to progress from the point r at time t to the point r' 
at time t' is easily inferred, since only additive random processes are 
involved. (3"7) 

P(r t ]  r ' t ' )  has the general scaling form 4 

P(r t  I r ' t ' )  ~ It -- t'l -d/a F( (r -- r ' ) / l t  -- t'l l/p) (2) 

where the scaling exponent /~ depends on the index f characterizing the 

4 We assume that the walker always uses one time unit to j ump  to the next position. This con- 
dition can be relaxed by introducing more general "L6vy walkers ''C4'5~ who traverse a given 
step with a prescribed velocity. If the first or second moment  of the time step distribution 
becomes infinite, the scaling form in Eq. (2) will change. We shall not consider these general 
walkers further in this paper. 
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L6vy distribution. For f >  2 the L~vy flights have a well-defined root mean 
square deviation, i.e., a finite second moment, and/~ locks onto the value 2. 
For f <  2 the L6vy flights trace out a fractal of dimension f , (z  3, 6) and the 
scaling exponent is # = f .  In the marginal case f =  2 we find logarithmic 
corrections to the scaling form. (3'1~ 

For  /~ = 2 the scaling function F ( x )  takes the welt-known Gaussian 
form F ( x ) =  e xp ( -x2 ) ;  this is a consequence of the central limit theorem, (7/ 
which in the present context leads to universal behavior. For # < 2 the 
scaling function F ( x )  can only be given explicitly in terms of known 
functions for # - -1 ,  where we find the Cauchy distribution F ( x ) =  
(1 -1- X2) -(d+ 1)/2 (7) It is, however, easy to show that F ( x )  -~ const for x ~ 0 
and F ( x )  --* 0 for x --, oo. 

In order to estimate the particle number fluctuations A N ( t ) ,  we con- 
sider a bounded volume of linear extent L, where L is much larger than the 
microscopic length scale in the problem, i.e., the mean displacement per 
unit time for f > 2 or, otherwise, the small-distance cutoff for f ~ 2. The 
instantaneous number of particles in the volume N ( t )  fluctuates about the 
mean value N - - p L  a, where p is the mean particle density. To the extent 
that the elementary L6vy step has a well-defined size, i.e., for 1 </~ < 2, the 
scaling form in Eq. (2) defines an effective "dispersion law" for the 
propagation of a "L6vy flight" particle, x ~ t 1/~, hence the size L of the 
volume sets a time scale tL ~ L ~. For  t ~> tL the particles propagate across 
the volume and subsequent measurements of N ( t )  at time differences 
A t  ~> t L are statistically independent, varying by an amount of order ___ x/-N. 

At intermediate times t ~ tc  the particles have a finite probability of 
remaining inside the volume; note that this argument depends on the 
existence of a mean range, i.e., 1 < # < 2. Only particles in the boundary 
zone of the volume contribute to the fluctuations in N( t ) .  The thickness of 
the boundary zone is estimated by means of the dispersion law to be of 
order l t ~ t 1/~. Thus, the volume of the "influence zone" is of order l t L  a -  1 

and the total number of particles in the zone is [ t L d - l p = N l t / L .  The 
particle number in the boundary zone can be regarded to be statistically 
independent with fluctuations given by + _ ( N I J L )  ~/2. Those are the only 
relevant fluctuations contributing to A N ( t )  for the entire volume in 
question and we conclude that 

A N ( t )  = N ( t )  - N(O) ~ +_ ~ t H (3) 

where the Hurst exponent H = 1/(2#). For the correlation function for N ( t )  
we find, correspondingly, 

( A N ( t )  2 )  ~ ( I N ( t )  - N(0)]  2) ~ N t2,~ = P L  d ~t2H Z (4) 
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We note the explicit appearance of a factor L a 1 proportional to the 
surface of the volume. 

For 0 < # < 1 the above argument breaks down, since the elementary 
L6vy flight has an infinite range and can span the entire volume in a single 
step. As will be shown in the more detailed analysis in the next section, the 
Hurst exponent locks onto the value 1/2, i.e., a linear time dependence, 
whereas the exponent # enters in the L-dependent prefactor, i.e., 

~AN(t) 2) ~ ( [N( t ) -N(O)]  2) ~ p L  a ~'t (5) 

We note that the surface dependence (for # = 1) is gradually changed to a 
volume dependence (for # = 0) as a function of # = f .  It seems that this 
behavior must be related to the fractal dimension ~ D = f  of the cluster 
traced out by the L6vy flight. 

The associated power spectrum is 

fo ' s(o~)= clt ([N(t ) -N(O)]  2) cos(or) co1+2. (6) 

The spectrum is independent of the dimension d, but depends on the L6vy 
distribution. 

4. D E N S I T Y  C O R R E L A T I O N S  

In integral form the transition probability P(rt[ r't') for independent 
L6vy flights is given by ~3~ 

P(rtl r't')= f exp{ip(r - r ' ) - p "  [ t -  t'[} (27z)d (7) 

It follows that the statistically (ensemble) averaged density correlations 
take the form 

(n(rt) n(r't') ) = p2 + pP(rt [ r't') (8) 

where p = ( n )  is the mean density and we have used P(rt[ r't')= ~a(r- r'). 
The instantaneous number of particle in a volume V is 

N(t) = ~ n(rt) dar (9) 
d V 

and we obtain, using Eq. (8) and inserting Eq. (7), the following expression 
for the particle number correlations in V: 

( [U( t ) -U(O)]  2)=2p f ~ dap [ 1 - e x p ( - p  ~[t])] jfvdarexp(ip r) 2 (10) 
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The fluctuation spectrum is now extracted by analyzing the asymptotic 
properties of Eq. (10). 

At short times, 1 - e x p ( - p "  It[) rises very slowly from zero and the 
integral predominantly samples the large-p region. For /~ = 2 the integral 
separates in Cartesian coordinates as discussed in refs. 8 and 9. In the 
general case the discussion is, however, most easily carried out in spherical 
coordinates. In the asymptotic region p >> l/R, where R is the radius of a 
spherical volume in d-dimensional space, we have 5 

For R ~> 1 the oscillating part in Eq. (11) effectively reduces the integral in 
Eq. (10) by a factor 1/2 and we obtain for t <  R ~ the simple expression 

([N(t)-N(O)] 2 > ~2p S(d) RJ-1 dp 1 -  exp(-P~ Itl) (12) 
7z 1/R p2  

Here S(d) denotes the area of the unit sphere in d-dimensional space. We 
have controlled the lower limit by an effective IR cutoff 1/R. 

The above expression for the particle number correlations can be 
expressed in terms of the incomplete gamma function6; it is, however, easily 
discussed in the above form. For 1 < # < 2 the integral is nonregular for 
small t. A simple dimensionality analysis yields the behavior I tl 1/~ and a 
more detailed analysis (see footnote 6) 

<[N(t)-N(O)]2>~2P S(d) F (  - ~ ) R a - '  't'~/" (13) 

for t < 1/R ~ and 1 < # < 2, where F ( 1 -  I/t0 is the gamma function. 

5 In spherical coordinates and noting that dJr ~ r a l dr sin J -2  0 dO, where 0 is a polar angle 
to a fixed direction, we have 

f fO' ;1 dar exp(ipr) ~ r a ! dr d# (1 - -  L/2) (a- 3}/2 exp(iprtt) V --1 
f" ~20 dr ra l(pr)l-a/2 Ja/2 l~p-a/2Rd/2Ja/2(pR) 

where JJ/2 is a Bessel function, and we obtain Eq. (11) from the asymptotic behavior 

[ 2 ~1/2 [pR-(d+l 

6 In terms of the incomplete gamma function we have 

1 r t t ' ] _ R  1 - e x p  - ( [ N ( t )  N ( O ) ] Z ) ~ 2 p S ( d )  Rd J Itll/" 1 - - '  R~'- 

For It[ < R ' we have F(1 -- 1/p, Itt/R ~) --* F(1 I/p) and we obtain Eq. (13). 
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For 0 < # < 1 the integral changes behavior and becomes regular for 
small t. A simple expansion gives 7 

( I N ( t )  - N(0)]  2 ) ~ 2p - -  
S(d) 

~(1 - u )  R d-" Itl (14) 

For  /~ = 1, i.e., the borderline case, we obtain a weak logarithmic 
correction in Eq. (14), 

( [ N ( t ) -  N(O)] 2 } ~ -2p  S(d) Rd " l t l  log/I,t__ 
R 

(~5) 

5. FIRST RETURN T I M E  

The power spectrum derived above can be directly connected to the 
distribution of time intervals T spent uninterruptedly by the L6vy walkers 
inside the volume V. The signal N(t), equal to the total number of walkers 
within V at the instant t, is clearly equal to the sum over all particles of 
rectangular box signals ni(t): For  all time instances t for which the walker 
number i is inside V the function ni(t) assumes the value 1. Whenever the 
walker is outside V the indicator function ni(t) is equal to zero. The graph 
of the function n~(t) consists of rectangular boxes of height 1; see Fig. 1. 
The duration T of the individual rectangles is governed by the distribution 
D(T), which we are going to determine below. 

Since the walkers are assumed to be independent, the power spectrum 
of N(t) is proportional to the power spectrum of the indicator ni(t) for any 

7 The exact expression, avoiding the cutoff 1/R, for 0 < # < 1 is 

([N(t)_N(O)]Z)=2pS(d) F(1-#)r((d+#)/2) 
21 -UF(1 - #/2) 2 F(1 + (d-- #)/2) 

R ~-~ Itl 

n(t)~ 

T 

Fig. 1. The indicator function n(t) for a walker in one dimension. The volume V consists of 
the positive real axis. 
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i. As shown in ref. 12, the power spectrum of hi(t) is easily found from the 
box size distribution D(T). The scaling behavior D(T) oc 1/T ~ leads to a 
power spectrum S(f)  oc 1/H with/3 = 3 - e when 1 ~ e. As ~ becomes less 
than 1, the power spectrum exponent/3 locks at the value 2. 

We found above that the power spectrum exhibits scaling for frequen- 
cies corresponding to short times compared with the time it typically takes 
a walker to traverse the volume V. At this short time scale a walker entering 
the volume through one of the imaginary walls will leave V again in the 
neighborhood of where it entered. Hence, the calculation of D(T) can be 
reduced to the problem of first return to the wall through which the walker 
entered V. This problem can be solved by considering instead of a bounded 
volume a semi-infinite region in d dimensions restricted by a hyperplane. 
Let V be the region for which, say, the first of the d coordinates is positive: 
xl >0 .  The signal n(t)is now given by n ( t ) =  O[Xl(t)], where O[x] is the 
Heaviside step function. Assume that a walker passes into V through this 
hyperplane at time T =  0. We want to calculate the probability D(T) for 
the walker to pass out through the hyperplane for the first time at T >  0. 

The calculation of D(T) is in fact a one-dimensional problem. We just 
have to keep track of the projection of the walk onto the xl axis. If the 
position x(t) performs a L6vy walk with index f in d dimensions, then x~(t) 
will execute a L6vy walk in one dimension with the same index f .  8 

Let us now consider a one-dimensional L6vy walk with coordinate 
x(t). Assume that the walker in the time step from t =  - 1  to t = 0 makes 
a step from x ( - 1 ) < 0  to X o = X ( 0 ) > 0 .  The probability P(xo) for the 
walker in this time step to move from somewhere to the left of the origin 
to the position Xo is determined by the step size distribution given in 
Eq. (1). We find 

P ( x o ) = { l o f  if x o > l  
if Xoe [0, 1] (16) 

Let Pxo(Xt) denote the probability for the walker to be in x at time t given 
that it was at position Xo at time t = 0. Since we are interested in the first 
time the walker passes out of the region x > 0 (to the region x < 0), it is 
convenient to use an absorbing boundary condition at x = 0 .  (7) This 
ensures that return to the origin is the same as first return. We use the 
usual image method and express Pxo(Xt) in terms of the transition 
probability given in Eq. (2): 

Pxo(Xt) = P(xt I Xot = O) - P(xt I -Xot  = 0) (17) 

s It is not strictly correct that xl(t) executes a L6vy walk. The distribution of projected 
displacements D(sl) scales a s  1/s~ +f for s 1 larger than the short-distance cutoff introduced 
for the d-dimensional walk. For sl shorter than the cutoff D(s~) is a complicated function 
of s~. The fact, however, that liras, ~o D(s~)= const permits us to neglect this detail. 
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The probabil i ty for the walker at any later time to be posit ioned to the 
right of  the origin is given by 

;5 Pxo(X( t )>O)= Pxo(x t )dx  (18) 

The probabil i ty Pxo(X(t)> 0) can only change in time due to the walker 
escaping th rough  the origin. Hence, the probabil i ty Dxo(T ) for a walker 
that  started at x o at time t = 0 to pass out  through the origin at time T will 
be given by the time derivative of P~o(X(t) > 0). To obtain the first return 
time distribution D(T) ,  we have to average Dxo(T) over P(xo). Collecting 
all the pieces, we finally have 

d 
f o  P ( x ~ 1 7 6  - X o t = O ) }  (19) D( T) = dt 

where P(xo)  is given in Eq. (16) and P ( x t l  X o t = 0 )  in Eq. (7). It is now 
straightforward to extract the scaling behavior  of D ( T )  for T ~  1. 9 The 
result is 

1 
D( T) ~ T2 - 1Lf (20) 

This distribution of first return times determines the distribution of 
box sizes in the signal n ( t ) =  O [ x ( t ) ] .  F r o m  the scaling relation described 

9 Inserting Eq. (7) and Eq. (16) into Eq. (19) and performing the following set of substitutions 
in the integrals 

p~--~pT l/Y i Xo~--~xoT~/Ji x~---~xT ~/f 

leads to the following expression 

D( T) = T -1 + I/Yil ( T ) + T - z + x'Yi2(T ) 

where the integrals I~ and I 2 are defined as 

and 

2 d - - - • P  2i sin(px0) pYexp{ipx -pY} 
7~ 

I2(T)=f dxoxoffl dx~ ~ d ~ ap 2i sin(pXo) pJexp{ipx --pf} 
~Jjj ,)_~ 27r 

One easily finds that for T~> 1 

I a (T) ~ T - 2/Ji 1 2 ( T )  ~ c o n s t  

Since 0 < f <  2, the result in Eq. (20) follows. 
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above between the box size distr ibution and the power spectrum we find 
the following results: 

1. f = 2 ~ = 3 / 2 ~ # = 3 / 2 .  

2. 1 ~ < f < 2 ~ c ~ = 2 -  l i fe [1, 3 / 2 [ ~ # = 3 - e =  1 + l i fe ]3/2, 2].  

3. O ~<f< 1 ~ c~ = 2 -  l / f <  1 ~ #  = 2. 

6. S I M U L A T I O N S  

In order to illustrate the above analytical results for the fluctuation 
spectrum, we have performed simulations in one and two dimensions of the 
L6vy flight. The results are, as expected, independent  of dimension. 

The two-dimensional  simulations are performed on a system of size 
R x x Ry with periodic boundary  conditions. We consider Nw independent  
walkers. The displacements of the walkers s = s{cos(0), sin(0)} are in each 
time step chosen stochastically. The direction is isotropic, i.e., 0 is 
uniformly distributed on the interval [0, 2~[.  The length of the displace- 
ment  is distributed according to P(s)= 1/s 1 +r for s > 1 and P(s)= 0 for 
s <  1. In each time step we moni tor  the number  of walkers N(t) which, are 
posit ioned within a certain subregion V of  the system. 

The fluctuating signal N(t) is fast-Fourier- t ransformed and the power 
spectrum calculated from the square modulus  of  the Fourier  transform. 
The power spectrum is averaged over many  time sequences in order to 
achieve sufficient statistics. The walkers wander  in and out  of  the region V. 
We also measure the number  of  time steps T a particle spends successively 
within the region V. The distribution D(T) of these time intervals is 
generated. 

In Fig. 2 we show the power spectrum of 200 walkers moving on a 

4 

O3 
2 

O~ 1 '~ 

2 I I 
--5 ~4 ~3 --2 1 0 

Log10(f) 

Fig. 2. Power spectrum of the fluctuations in the number of particles within a subregion V. 
A total of 200 L6vy walkers with index f =  1.3 are considered on a system with periodic 
boundary conditions of size 2 - 104 • 2 �9 1 0  4. The region V consists of a square of linear size 
1 0  4. The straight line has slope equal to the analytically calculated value 1 + 1/1.3 ~ 1.77. 
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Fig. 3. Distribution of time intervals spent uninterruptedly within the subregion V. The 
system is the same as the one considered in Fig. 1. The straight line has slope 2 - 1/1.3 ~ 1.23, 
which is the scaling exponent calculated for the distribution of first return times of a L~vy 
walker of index 1.3. 

system of size Rx = Ry = 2 x 10 4. The subregion V consists of a square of 
linear extension equal to 104. The L6vy flight index is f =  1.3. The straight 
line has slope equal to the analytically calculated power spectrum exponent 
/~ = 1 + 1/1.3 ~ 1.77. 

In Fig. 3 we show the distribution of time intervals spent uninter- 
ruptedly within V. The straight line has the slope ~ = 2 - 1 / 1 . 3  ~ 1.23 
calculated above for the distribution of first return times. 

There is an excellent agreement between the analytic calculation and 
the simulation results. 

7. S U M M A R Y  A N D  D ISCUSSION 

In this paper we have discussed in some detail the influence of an 
algebraic step size distribution, i.e., a L6vy distribution, for the elementary 
Brownian motion of particles in an ideal gas on the macroscopic particle 
number fluctuations in a finite test volume. The study was motivated by the 
desire to investigate the role of universality in this kind of dynamical 
system.. We find that at short times compared with the traversal time 
across the volume the fluctuation spectrum is characterized by a Hurst 
exponent which is independent of the dimension of the system. 

In the case where the step size distribution falls off fast enough such 
that a finite mean square deviation exists, implementation of the central 
limit theorem implies that the Hurst exponent locks onto the universal 
value 1/4, characteristic of ordinary Brownian motion. We note that in the 
present context it is the central limit theorem which ensures universality, 
i.e., the decoupling between the detailed microscopic character of the 
Brownian motion and the macroscopic sealing behavior. 

In the case where the step size distribution falls off so slowly that the 
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mean square deviation diverges but the distribution still possesses a finite 
mean value, the Hurst exponent depends on the index characterizing the 
L6vy distribution and thus exhibits an anomalous behavior. In other 
words, the rare but large steps generated interfere with the macroscopic 
behavior of the density fluctuations and changes the scaling behavior. 

Finally, in the case where the L6vy flights have infinite range, i.e., the 
mean step diverges, we again obtain a universal behavior as regards the 
time dependence of the macroscopic fluctuations in the sense that the Hurst 
exponent now locks onto a new value, 1/2. On the other hand, owing to 
the infinite range of the L6vy flights, the surface dependence of the fluctua- 
tion spectrum is changed to a fractal dependence in the sense that the 
fractal dimension of the cluster formed by the L6vy flights enters in the size 
dependence. 

In a recent paper Hayot <11) has established a closure approximation in 
lattice gas hydrodynamics applied to turbulence by implementing 
microscopic L6vy walks and has derived results on the shape and flattening 
of velocity profiles. 
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